

SOLID MILLING STRATEGIES & TOOL CHARACTER-ISTICS

TYPICAL TOOL DESIGN & FEATURES

III IOAL IOOL DEGIGIN & I LAIONEO							
Machining strategy: Range:	General Machining JABRO®-SOLID²	Advanced Roughing JABRO®-SOLID²	High-Speed Machining JABRO®-DIAMOND JABRO®-TORNADO	High-Performance Machining JABRO®-HPM	High-Feed Machining JABRO®-HFM	High-Speed Steel JABRO®-HSS-Co	Micro Machining JABRO®-MINI
V _f (feed rate)							
N (RPM)							
Q (volume)							
F (cutting force)							
P (kW)							
Most used in SMG:	PMSKN (universal)	PMSKN (universal)	H & GR1	PMKNSH	PKMSH	S (Ti-alloys), M	H, N11, GR1
ae * ap	$\begin{array}{c} a_{e} = D_{c} \\ a_{p} = 1^{*} D_{c} \end{array}$	$\begin{array}{l} a_{e} \leq 0.15 \text{*D}_{c} \\ a_{p} = 2 \text{-}4 \text{*D}_{c} \end{array}$	$a_{e} < D_{c}$ $a_{p} = D_{c}$	$\begin{array}{c} a_{\text{e}} = D_{\text{C}} \\ a_{\text{p}} = 1.5^*D_{\text{C}} \end{array}$	$a_e = 0.5*D_c$ $a_p < r\epsilon 1$	$\begin{array}{c} a_{\text{e}} = D_{\text{C}} \\ a_{\text{p}} = 1^*D_{\text{C}} \end{array}$	$\begin{array}{l} a_{e} \leq D_{C} \\ a_{p} < D_{C} \end{array}$
Tool design							
	 Double-core designs for more stability High helix angles for light cutting motion Reinforced tips 	 Double and conical core for additional stability and strength Differential pitch for vibration-free cutting 	 Short cutting length Non-cutting back end radii Large core diameter Neck reductions 	 Defined flutes for higher f_z Roughing profiles for reduced cutting forces Differential pitch for 	 Chip thinning geometry for optimised feed speeds Neck reductions Forces in axial plane, ideal for long overhang 	 Variable face profile for vibration-free cuts Polished flutes for optimised chip removal Large diameter and 	 Standard cutters from D_C 0.1 to 2 mm Specific geometries for hard and soft materials, universal and graphite

Features

- Reinforced tips
- Differential pitch for
- vibration-free cutting
- Defined edge hone with PVD coatings
- vibration-free cutting • Chip splitters for small and light chips, which aids
- Open frontal teeth design for controlled helical interpolation ramping

with chip removal

- - Neck reductions Corner radii
 - PVD coatings
 - Diamond coated range for graphite applications
- Differential pitch for vibration-free cutting
- Curved helix for vibration-free cutting
- Defined edge hone with polished PVD coatings
- ideal for long overhang
- Large diameter and lengths for high metal

removal

- universal and graphite
- Additional strength due to tapered neck designs • Thin coatings for maintaining sharp cutting
- edge conditions Diamond-coated tools for abrasive resistance in

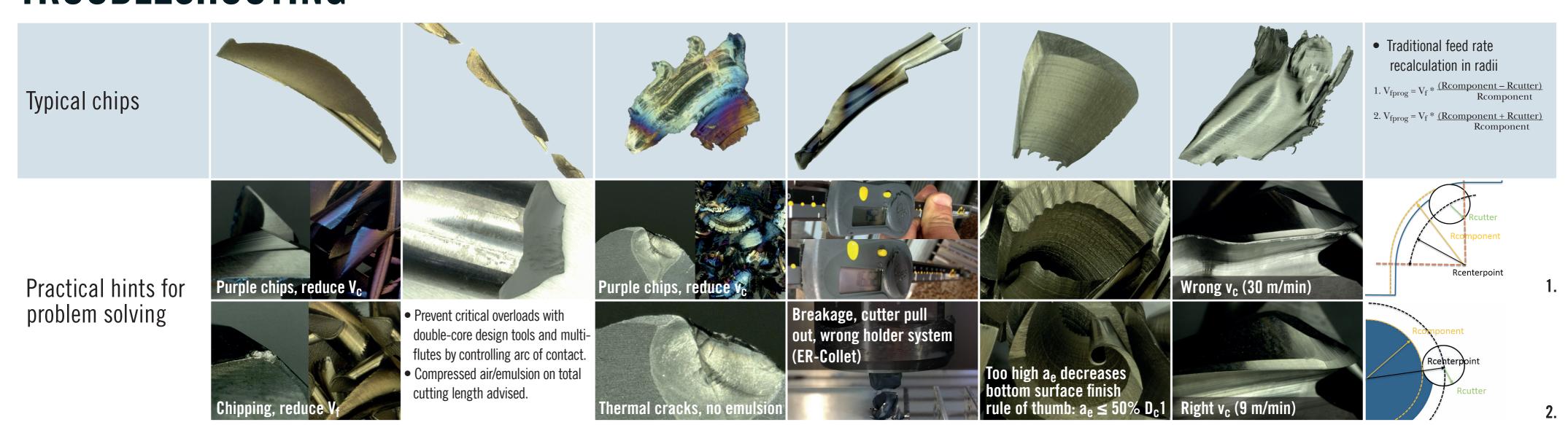
graphite applications

Holder system

All

Weldon / Highprecision collet chucks

Shrinkfit / Highprecision collet chucks


Weldon/Safe-Lock™

Shrinkfit / Highprecision collet chucks

Weldon

Shrinkfit / Highprecision collet chucks

TROUBLESHOOTING

