

MILLING MACHINING OPTIMIZATION TECHNIQUE

YOUR MAIN TARGETS: CUTTING CONDITIONS FOR BEST PERFORMANCE & CONTROLLED TOOL WEAR

CONTROLLED TOOL WEAR: OPTIMUM FLANK WEAR

1. FEED - AVERAGE CHIP THICKNESS

2. EFFECTIVE CUTTING SPEED

INPUT

 $\cdot D_{c} = 100 \text{ mm}$ $\cdot a = 20 \text{ mm}$ $\cdot v_c = 200 \text{ m/min for } a_c = 100 \text{ mm}$ (as advised in Machining Navigator)

APPLICATION

 $\cdot a_{e}/D_{c} = 20 \%$ and singlesided milling \rightarrow C₁ = 2,3 $\cdot K_{r} = 45^{\circ} - C_{2} = 1,4$ $\cdot f_{7} = 0,05 \ge 2,3 \ge 1,4 =$ 0,16 mm/tooth $\cdot a_{e}/D_{c} = 20 \% \rightarrow C_{v} = 1,35$ $\cdot v_{ce} = 200 \text{ x } 1,35 = 270 \text{ m/min}$

3. CONTROLLED TOOL WEAR

- More wear resistant + + Tougher -*
- ** Sharper cutting edge \rightarrow Stronger cutting edge \rightarrow

4. CUTTING CONDITIONS

Make sure the milling operation is done in the best circumstances possible:

- Correct tool positioning
- Most stable milling cutter
- No vibrations
- Good chip evacuation

FORMULAE

Rotational speed/ cutting speed:

Table feed / feed per rotation:

 $v_f = n x Zc x f_z [mm/min]$ $f = Zc x f_z [mm/rev]$

This schedule represents the majority of cases. For specific cases in unfavorable circumstances or for specific measurements, please contact your business partner at Seco.

